干式高压焊接实验系统及其关键问题(图)
http://www.weld21.com 2009-03-30 09:18 

摘 要:对比了研究国内外现有的海底输油管线破损管段的干式和湿式维修方法,国内渤海湾水域特殊的地质条件和油品特性决定了干式高压焊接维修是—种质量可靠而又便于向深海拓展其使用范围的修复方法。介绍了设计制造完成的国内规格****且唯一的干式高压焊接实验系统,系统配备了完整的自动测控单元,能够完成高压焊接电弧特性研究和海底管道干式高压自动焊接设备及工艺的研究工作。论文还讨论了实验系统所涉及的环境气体选择、视觉信号采集和全位置焊接实验装置等相关问题。
关键词:干式高压焊接;海底管线修复;水下焊接

前 言

  海底管线的维修是一项复杂而庞大的工程,国外发展维修海底管线技术始于六十年代,最初都是依靠潜水员入水进行检查并实施作业,但随着管线敷设和埋设的水深和管线长度的不断增加,仅仅依靠人员维修已不能满足需要,因此从七十年代开始,英、美等国都开始发展各种水下管线维修装置,目前都已趋向成熟。我国海洋石油和天然气的勘探和开发起步较晚,在与之相关的海洋工程服务方面,与国外相比,在技术、设备等方面有不小的差距。目前我国还没有能够实施水下管线维修的作业装置,相应水下管线的维修工作几乎都是委托给国外的工程公司进行,费用昂贵。

  水下管道维修按维修环境分湿式和干式二种,湿式维修是在水环境中对管道直接进行焊接或机械修补。由于湿式焊接质量低,湿式维修多采用法兰或抱箍等机械维修法。在大深度水下,因人员无法安全有效地作业,国外重点采用无人遥控潜水器(R0V)进行湿式维修。头等专用海底管道维修工具(目前国外用的这些工具大多有专利保护)。

  干式维修是在水下创造一个干式环境,由人员直接进行管道维修。在水质混浊条件下,ROV等无人作业法受到很大限制,人员直接介入必不可少,而当水深小于60米时,人员可以进行空气潜水,并能安全有效地工作,因此采用干式维修法是必要和可行的。干式条件下,可采用法兰或抱箍等机械维修法,也可采用焊接法,因干式焊接质量能得到保证,多以焊接法为主。干式维修又分常压和高压,因常压舱密封技术要求高,在压力小,对人员作业安全和效率影响小的情况下,多采用高压干式维修法。干式高压焊接技术与装备的研究意义重大。

1 高压焊接试验舱的总体设计

  1.1 设计要求和特点

  高压焊接实验舱的工作特点决定了必须满足特殊的要求。舱内气体压力为0.11~0.70 MPa,无级可调;舱内气体成分可以改变(根据压缩空气的爆炸实验而定);必须方便开闭,利于焊接试件进出;要能在舱体密闭的情况下,观察内部的焊接过程:焊接试验过程中舱内无法进人,试验设备要求自动化;TIC焊接保护气单独送入;舱体内外电信号、气体和焊接试件交换量大而且频繁。

  1.2 试验系统组成

  系统由如下凡个部分组成。高压焊接试验舱及舱内的高压焊接轨道焊机系统和舱外的焊接电源;试验舱环境气体调配储罐:按要求供气系统应向气体调配储罐和高压焊接试验舱供给氮气、氩气、二氧化碳和压缩空气:测控系统由中央控制台、操舱系统、轨道焊机控制系统、焊接电源控制系统和摄像系统组成。系统构成如图1所示,实验系统建成如图2。



  1.3 系统工作原理

  首先,在环境气体调配储罐内将压缩空气和氮气按照适当比例混合并达到要求压力,然后将该混合气体充入高压焊接试验舱内。焊接试验需要吹送的氩气由独立气路提供。焊丝盘(送丝装置)放置在轨道焊机上,焊接电源和轨道焊机控制器都放置在高压焊接试验舱外。每次焊接工艺试验完成后,先将高压焊接试验舱内的气体通过专用气体排放管路导出舱外,待舱内气压降至0 MPa后,再打开试验舱。测控系统由中央控制系统和各子控制系统组成,它们是高压焊接环境调配控制系统、轨道焊机控制系统和焊接电源控制系统。各子系统由独立的计算机实时控制,同时,有关参数通过通信电缆传送给中央计算机。在中央控制台上可以观察焊接电弧高速摄像、设备区场景和试验舱内部场景摄像,并通过气动操舱系统的动作按钮完成试验舱的开启闭合,还可以执行灯源开关和电加热垫预热温度控制等辅助性任务。

2 干式高压焊接实验系统的其它关键问题

  2.1干环境气体与焊接保护气体

  根据渤海油田现有管道深度,在干式舱系统总体方案设计中拟采用常规空气潜水技术为主,潜水员由脐带面罩独立供气,由于式舱侧面闸室进舱作业的方式。水面母船配置相应潜水系统,与干式舱系统相互独立。因为在干式舱系统总体方案设计中,潜水员由脐带面罩独立供气,所以加压气体的选择不再考虑气体对潜水员呼吸系统的影响,而重点考虑爆炸燃烧性、焊接质量以及经济效益。氮气(N2)价格便宜且不发生爆炸燃烧,但是焊接质量有待通过在高压焊接试验舱中进行的试验来考察。加压气体有三种可能的选择方案,即纯air、air+Ar、air+N2。于是,首先要确定纯空气介质的临界爆炸压力Pr,如果Pr<7bar,则要决定添加Ar还是N2,更合适。如果选择air+Ar作为加压气体,则需要通过实验确定:以及与Pr-7bar相匹配的一系列临界爆炸氩气浓度Ar%。如果选择air+N2作为加压气体,同样需要确定与Pr-7bar相匹配的一系列临界爆炸氮气浓度N2%。实验证明,在控制气氛中可燃成分的比例的前提下引弧,不会发生爆燃。

  焊接保护气体仍然选用常规TIG焊接所用的氩气。

  2.2视觉问题

  由于焊接实验是在密闭的高压舱中进行,必须将舱内场景和焊接电弧的图象采集并引导到舱外,以便于观察记录。由于舱内压力的升高,视觉系统的机械部件和电器元件都要经受压力的考验,例如电容就有可能被压破。为保证CCD器件的正常工作,可以有三种选择。第一,将摄像头放置在承压的保护罩内;第二,用刚性光路(反射镜)或柔性光路(光纤)把光引导到舱外;在一定的压力范围内允许直接将摄像头置于舱内使用。

   2.3实验舱内全位置焊接工装

  课题的目标之一是研制一套适用于海底管道全位置焊接的工艺,所以设计了一套可以在舱内完成全位置焊接实验和管道焊接实验的工装。

  2.4焊接工艺与管道焊接工艺研究

  手工TIG焊用在不规则管道的打底焊和局部焊点的修补焊接。在海底高压且潮湿的干式舱中,采用高频放电引弧对于潜水员是极不安全的,计算机控制的焊接电源可以对焊接电流和焊接电压进行复杂精确控制,通过钨极和工件的直接接触实现引弧是可能的。压力对TIG焊的重要影响是弧压增加。工作电压的增加是因为高压环境吸热能力的增加。因为热量更容易从电弧外部区域损失,电弧可以通过减少直径来减少热量损失。事实上,这就要求工作电流的电弧交叉区域小,从而增加电流密度、电离水平和工作温度。额外的能量需求导致上述的弧压增加。如果这个弧压由位于母船上的电源提供,则需要增加一个额外电压,以满足连接电源与焊接舱的电缆阻抗的要求。因为环境对TIG弧压的影响,在建立焊接过程合适的工作电压限值之前,这些因素必须特别地考虑。对于TIG焊,效率从1个大气压时的90%下降到6bar(6×102kPa)时的70%,而8bar(8×102kPa)时又恢复到75%,之后基本保持恒定。对于恒定的工作电流,弧压随水深增加的速度比焊接效率下降速度快。随着环境压力增加,TIG焊电弧稳定性降低。

3 结论

  设计制造成功的干式高压焊接实验系统具有进行焊接电弧和焊接工艺实验的全面功能,目前不仅适用于1-7bar之内的12″双层管道高压TIG焊接工艺的研究,还可以进行高压电弧物理的研究,两种以上环境气体的配比对电弧和工艺的影响研究,两种以上保护气体对电弧和工艺的影响研究。经过适当改造,设备可用于负压焊接研究。 【MechNet】

页面功能 】【返回首页】【关闭
更多文章搜索:
相关文章
·船舶焊接缺陷及其质量检验(03-16)
·铝及铝合金MIG焊焊接接头缺陷及防止措施(03-09)
·激光焊接技术应用(03-02)
·高炉热风口法兰的开孔和焊接(图)(02-17)
·精密焊接在继电器制造中的应用(图)(02-05)
·珠海金宝:船厂拼板的高效MAG双丝焊接技术(图)(01-05)
·珠海金宝:变极性MIG/MAG焊接工艺及应用(图)(12-27)
·焊接安全操作(12-22)
·我国新钢种及其焊接性的发展(12-15)
·MAG焊焊接接头的研究(11-03)
会员动态 更多>>>
行业动态 更多>>>
热点文章 更多>>>
网站动态 更多>>>
特级合作伙伴
版权所有:焊接21世纪-中国焊接器材网 技术支持:3w21.com